Name:		

Matric No: Section:

INTERNATIONAL ISLAMIC UNIVERSITY

MID-TERM EXAMINATION SEMESTER II, 2017/2018 SESSION KULLIYYAH OF ENGINEERING

Programme

: ENGINEERING

Level of Study

UG 2

Time

: 8:00 pm-10:00 pm

Date

: 25/10/2018

Duration

: 2 Hours

Course Code : EECE 2313/ ECE 2133

Section(s): 1, 2

Course Title : Electronic Circuits

This Question Paper consists of Six (6) Printed Pages (Including Cover and a blank page) with Three (3) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Use only pen for writing the answer.
- Do not use your own paper sheet and no extra paper will be provided
- A total mark of this examination is **60**.
- This examination is worth 30% of the total assessment.
- For drawing you may use a pencil
- Answer ALL THREE(3) questions
- Answer on the question paper

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

	Question 1	Question 2	Question 3	Total Marks
Marks	20	20	20	60
Marks				
Obtained				

Q.1 [20 marks]

(a) Consider the circuit as shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function $T(s) = v_0(s)/v_i(s)$. Find the corner frequencies of the circuit if $R_s = 3 \text{ k}\Omega$, $R_p = 9 \text{ k}\Omega$ and $C_p = 10 \text{ c}$ (6+2 marks)

$$T(S) = \frac{V_0(S)}{V_1(S)} = \frac{Zp}{2p+2s}$$

(b) Draw the Bode plot (magnitude and phase) of the following transfer function.

(8 marks)

$$T(s) = \frac{10^{-3}(s+90)(s+120)}{(s+60)}$$

(c) Determine the magnitude and phase at s = 700 rad/Sec, using the solution from the graph of the question Q1.(b). (4 marks)

Trs>= 10 90 (i+ 20) 120(i+ 20) = 0,18 (i+ 20) (i+ 7/10)

 $T(6700) = 0.18 \cdot \frac{1}{100} \times \frac{1}{100}$ $= 1110 \times S$ $= 1110 \times S = 0.7$

T(300) LB = - 3.098 AB

Q.2 [20 marks]

A common source amplifier is shown in Fig. 2, with the following circuit component values $R_{\rm si}=10{\rm k}\Omega$, $R_{\rm G}=40{\rm k}\Omega$, $R_{\rm S}=5{\rm k}\Omega$, $R_{\rm D}=10{\rm k}\Omega$, $R_{\rm L}=6{\rm k}\Omega$, Design the circuit for lower corner frequency $f_{\rm L}=250{\rm Hz}$ and higher corner frequency $f_{\rm H}=100{\rm kHz}$. The MOSFET has a small-signal parameters, $g_{\rm m}=45~{\rm mA/V}$ and $r_{\rm o}=\infty$.

Fig. 2

- (i) Draw the small signal equivalent circuit diagram of the circuit (3 marks)
- (ii) Evaluate the midband gain, $A_v = v_0/v_i$ of the amplifier in dB scale (7 marks)
- (iii) Determine the coupling capacitance C_C (3 marks)
- (iv) Determine the load resistance R_L (7 marks)

Q.3 [20 marks]

A common emitter amplifier is shown in Fig. 3 'that operates at very high frequencies. The transistor parameters are: $g_m = 40 \text{mA/V}$, $r_\pi = 2.5 \text{k}\Omega$ and $r_o = 25 \text{k}\Omega$, $C_\pi = 8 \text{pF}$ and $C_\mu = 2 \text{pF}$. Assume that $C_{C2} = C_E = \infty$ and $C_{C1} = 3.3 \mu\text{F}$.

- i) Draw the simplified high-frequency small signal equivalent circuit diagram and Miller equivalent circuit diagram (3 marks)
- ii) Determine the midband gain $A_v = v_0/v_i$ (7 marks)
- iii) Write the expression of Miller capacitance and find its value (3 marks)
- iv) Evaluate the upper 3dB frequency (f_H) considering Miller capacitance and without considering Miller capacitance (2 marks)
- v) Evaluate the lower 3dB frequency (f_L) (5 marks)

Fig. 3

Avalmidband =
$$\frac{N_0}{V_g} = \frac{-9mVgs}{Vgs} + \frac{R'}{9mVgs} Rs$$

$$= \frac{-9mR'}{(i+9mR's)}$$
 $R_{L}=7$

(iv)
$$C_{L} = \frac{1}{2\pi f_{L}} (f_{Si} + f_{CG})^{2} = \frac{1$$

$$\frac{1}{R_{L}} + \frac{1}{R_{D}} = \frac{295,3700}{R_{L}} = \frac{5,12K\Omega}{R_{L}} + \frac{5}{R_{D}} = \frac{5}{R_{L}} = \frac{5}{12} + \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac$$

Av =
$$0.8 \times 0.674 \approx 0.54 \text{ /v} = -5.36 \text{ /B}$$

Q.3

$$|V| = |V| = |V|$$