

KULLIYYAH OF ENGINEERING

END OF SEMESTER EXAMINATION SEMESTER I, 20172018 SESSION

Programme	: Engineering	Level of Study	: UG 2
Time	: 9:00 am -12:00 pm	Date	: 02/01/2018
Duration	: 3 Hrs		
Course Code	: EECE 2313/ECE 2133	Section(s)	: 1-3
Course Title	: Electronic Circuits		

This Question Paper Consists of 6 (Six) Printed Pages (Including Cover Page) with 5 (Five) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Total mark of this examination is **100**.
- This examination is worth **50 %** of the total course assessment.
- Answer ALL QUESTIONS.
- Only approved calculator with 'KoE approved' sticker is allowed (non-programmable and non-graphical).
- Marks assigned to each problem are listed in the margins.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

All electronics gadgets are prohibited in the exam hall / venue. (e.g. mobile / smart phones, smart watches, and smart glasses)

Q.1 [20 marks]

(a) Consider the circuit shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function, $T(s) = \frac{v_o(s)}{v_i(s)}$. Find the corner frequency of the circuit if $Cp_1 = 30 \text{ pF}, Cp_2 = 60 \text{ pF}, R_S = 30 \text{ k}\Omega$ and $R_P = 60 \text{ k}\Omega$. (8 marks)

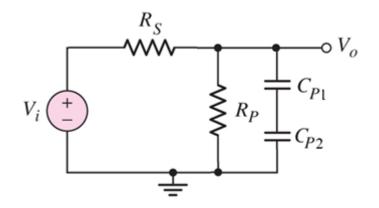
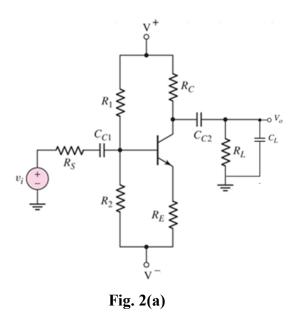


Fig. 1(a)

(b) Draw the Bode plot (magnitude and phase) of the following transfer function. (8 marks)


$$T(s) = 10^{6} \frac{s(s+50)}{(s+500)(s+100)}$$

(c) Determine the magnitude and phase of the transfer function from the plots drawn for Q1(b) at frequency $\omega = 300$ radian/sec. (4 marks)

Q.2 [20 marks]

(a) The common emitter amplifier as shown in Fig. 2(a) with the following circuit component values, $R_s = 0.5k\Omega$, $R_1 = 234 k\Omega$, $R_2 = 166 k\Omega$, $R_E = 1 k\Omega$, $R_C = 5 k\Omega$, $R_L = 20 k\Omega$. The BJT has small-signal hybrid- π parameters, $g_m = 40 \text{ mA/V}$, $r_{\pi} = 3 k\Omega$ and $r_o = \infty$.

Design the amplifier circuit that operates at lower corner frequency, $f_L = 300$ Hz and the bandwidth of the amplifier, BW = 500 kHz. Determine the maximum gain of the designed amplifier in dB. (10 Marks)

(b) Draw the simplified small-signal high-frequency equivalent circuit of Fig. 2(b). (2 marks)

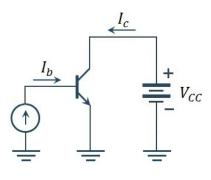


Fig. 2(b)

(c) Determine the transistor short-circuit beta frequency, f_{β} and cutoff frequency, f_T using the simplified small-signal high-frequency equivalent circuit of Fig. 2(b). (8 marks)

Q.3 [20 marks]

(a) The three transistor current source as shown in Fig. 3(a) has a finite β and infinite early voltage V_A. Derive step by step the expression for I₀ in terms of I_{REF} and β . (10 marks)

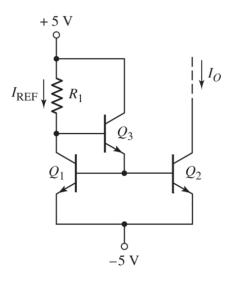
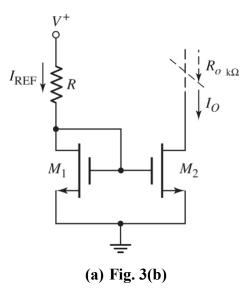



Fig. 3(a)

(b) Design a three transistor current source as shown in Fig. 3(a) such that $I_O = 5$ mA. What is the value of I_{REF} ? The transistor parameters are: $V_{BE}(\text{on}) = 0.7$ V, $\beta = 100$ and $V_A = \infty$.

(4 marks)

- (c) Draw the small signal equivalent circuit diagram of the current source shown in Fig. 3(a).(2 marks)
- (d) Design a MOSFET current source as shown in Fig. 3(b) such that $I_{REF} = 20$ mA, $I_o = 50$ mA, and $V_{DS2(sat)} = 0.2$ V. The biasing voltage, $V^+ = 12$ V. The transistors are available with parameters: $k'_n = 50 \mu A / V^2$, $V_{TN} = 0.4$ V and $\lambda = 0$. (4 marks)

Q.4 [20 marks]

- (a) What are the merits and demerits of the negative feedback amplifier? (3 marks)
- (b) Prove that gain sensitivity of an amplifier is improved with negative feedback. (4 marks)
- (c) The open loop gain of a voltage amplifier is changed from 1000 to 850 due to temperature effects. Design a negative feedback system to improve the gain stability 1.5% by determining the feedback factor β.
 (3 marks)
- (d) Draw the block diagram and small signal equivalent circuit diagram of a shunt-shunt ideal feedback amplifier. Analyze step by step the feedback amplifier to find the expression of the closed loop gain, $A_{\rm f}$, the input resistance, $R_{\rm if}$ and the output resistance, $R_{\rm of}$ in terms of open-loop amplifier gain, A and feedback amplifier gain, β . (10 marks)

Q.5 [20 marks]

- (a) What are the conditions for oscillation? (2 marks)
- (b) A wine bridge oscillator circuit is shown in Fig. 5. Derive the transfer function of the feedback network and derive the frequency of oscillation, f_o . Find the minimum amplifier gain for sustained oscillations. (12 marks)

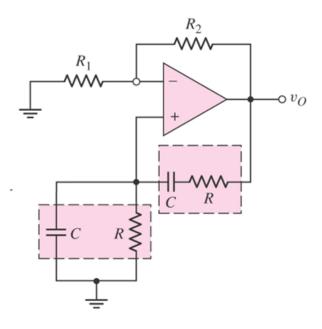


Fig. 5

(c) Design a wine bridge oscillator for generating 20 kHz. Assume that the capacitor value is 0.8nF. (4 marks)

BJT	MOSFET
$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{ V}$	$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L} \right) (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ $g_{m} = 2\sqrt{K_{n} I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$ $K_{n} = \frac{k'_{n}}{2} \left(\frac{W}{L} \right)$

USEFUL FORMULA

END OF PAPER