

KULLIYYAH OF ENGINEERING

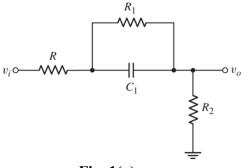
END OF SEMESTER EXAMINATION SEMESTER 1, 2018/2019 SESSION

Programme	: Engineering	Level of Study	: UG 2
Time	: 2:30 pm -5:30 pm	Date	: 31/12/2018
Duration	: 3 Hrs		
Course Code	: EECE 2313/ECE 2133	Section(s)	: 1-2
Course Title	: Electronic Circuits		

This Question Paper Consists of 6 (Six) Printed Pages (Including Cover Page) with 5 (Five) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO


- Total mark of this examination is **100**.
- This examination is worth **50 %** of the total course assessment.
- Answer ALL QUESTIONS.
- Only approved calculator with 'KoE approved' sticker is allowed (non-programmable and non-graphical).
- Marks assigned to each problem are listed in the margins.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

All electronics gadgets are prohibited in the exam hall / venue. (e.g. mobile / smart phones, smart watches, and smart glasses)

Q.1 [20 marks]

(a) Consider the circuit shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function, $T(s) = \frac{v_o(s)}{v_i(s)}$. Find the corner frequency of the circuit if $R = 3 k\Omega R_1 = 6 k\Omega$, $C_1 = 0.05 \mu F$ and $R_2 = 8 k\Omega$. (8 marks)

Fig. 1(a)

(b) Draw the Bode plot (magnitude and phase) of the following transfer function. (8 marks)

$$T(s) = 10^7 \frac{(s+1)(s+100)}{(s+1000)}$$

(c) Determine the magnitude and phase of the transfer function from the plots drawn for Q1(b) at frequency $\omega = 700$ radian/sec. (4 marks)

Q.2 [20 marks]

(a) The common emitter amplifier is shown in Fig. 2(a) with the following circuit component values, $R_s = 0.5 \text{ k}\Omega$, $R_B = 60 \text{ k}\Omega$, $R_E = 3 \text{ k}\Omega$, $R_L = 10 \text{ k}\Omega$. The BJT has small-signal hybrid- π parameters, $g_m = 40 \text{ mA/V}$, $r_{\pi} = 3 \text{ k}\Omega$ and $r_o = 100 \text{ k}\Omega$.

Design the amplifier circuit that operates at lower corner frequency, $f_L = 60$ Hz and the bandwidth of the amplifier, BW = 40 kHz. Determine the midband volatage and current gain of the designed amplifier in dB. (14 Marks)

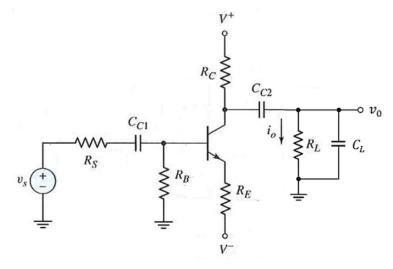


Fig. 2(a)

(b) Draw a small signal high frequency equivalent circuit diagram of a short circuited BJT amplifier as shown in Fig. 3(a). Analyze the circuit step by step to find the short circuit

current gain, $A_i = \frac{i_o}{i_i}$. Evaluate the unity gain bandwith, f_T of the BJT if the transistor

parameters are given as $g_m = 2 \text{ mA/V}$, $C_{gd} = 10 \text{ fF}$ and $C_{gs} = 50 \text{ fF}$. (10 marks

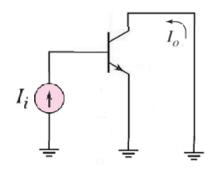
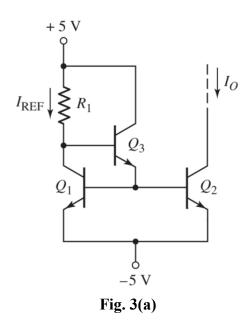



Fig. 2(b)

Q.3 [20 marks]

(a) Derive step by step the relation between I_{REF} and $I_o a$ three-transistor current source as shown in Fig. 3(a) and design the current source such that $I_O = 5$ mA. The transistor parameters are: V_{BE} (on) = 0.7 V, $\beta = 100$ and $V_A = \infty$. (10 marks)

(b) Draw the small signal equivalent circuit diagram of the current source shown in Fig. 3(a).(2 marks)

(c) Design a MOSFET current source as shown in Fig. 3(c) such that $I_{REF} = 0.1 \text{mA}$, $I_{01}=0.2 \text{ mA}$, $I_{02}=0.3 \text{ mA}$ assuming M₃, M₄ and M₅ are identical. The transistors are available with parameters $k'_n = 80 \ \mu A/V^2$, $V_{TN} = 0.7 \text{ V}$ and $\lambda = 0$. (8 marks)

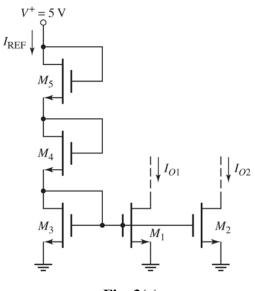


Fig. 3(c)

Q.4 [20 marks]

- (a) Draw a basic configuration of a feedback amplifier and show step by step that the gain sensitivity is reduced by a factor of $(1 + \beta A)$. (5 marks)
- (b) Draw the block diagram and small signal equivalent circuit diagram of a Shunt-Shunt ideal feedback amplifier. Analyze step by step the feedback amplifier to find the expression of the closed loop gain, $A_{\rm f}$, the input resistance, $R_{\rm if}$ and the output resistance, $R_{\rm of}$ in terms of open-loop amplifier gain, A and feedback amplifier gain, β . (10 marks)
- (c) For a series shunt feedback system, the open-loop gain A_v and closed loop gain A_{vf} of the amplifier are 10^5 and 60 respectively. Find the input resistance and output resistance of the amplifier if the input and output resistances of the basic amplifier are $R_i = 15 \text{ k}\Omega$ and $R_o = 35 \text{ k}\Omega$ respectively. Also find the closed loop bandwidth if the open loop amplifier bandwidth is 10 kHz. (5 marks)

Q.5 [20 marks]

(a) What are the conditions for oscillation?

(2 marks)

(b) A wine bridge oscillator circuit is shown in Fig. 5. Derive the transfer function of the feedback network and derive the frequency of oscillation, f_o. Find the minimum amplifier gain for sustained oscillations. (12 marks)

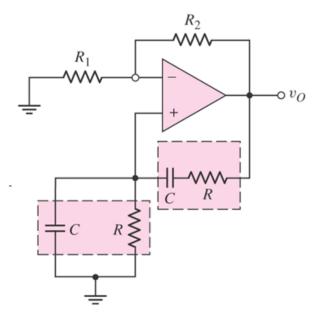


Fig. 5

(c) Design a wine bridge oscillator for generating 10 kHz.

(4 marks)

BJT	MOSFET
$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{ V}$	$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L} \right) (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ $g_{m} = 2\sqrt{K_{n} I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$

USEFUL FORMULA

END OF PAPER