

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA END OF SEMESTER EXAMINATION SEMESTER I, 2012/2013 SESSION KULLI YYAH OF ENGINEERI NG

Programme	: ENGINEERING	Level of S	Study : UG 2
Time Duration	: 9:00 am-12:00 pm : 3 Hrs	Date	: 05/01/2013
Course Code	: ECE 2133	Section(s)): 1-2

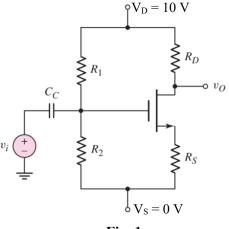
Course Title : Electronic Circuits

This Question Paper consists of **Six (6)** Printed Pages (Including cover and a blank page) with **Five (5)** Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- A total mark of this examination is **100**.
- This examination is worth **50%** of the total assessment.
- Answer <u>ALL FIVE (5)</u> questions.
- Useful formula and necessary parameters are given in page 6.


Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

Q.1 [20 marks]

The MOSFET circuit is shown in Fig. 1, the transistor parameters are $K_{\rm n} = 0.5 \text{ mA/V}^2$, $V_{\rm TN} = 0.8 \text{V}$ and $\lambda = 0$.

- (a) Find V_{GS}, I_D, and V_{DS}. Also calculate the small-signal hybrid- π parameters g_m and r_o. [Given that $R_1 = 32 \text{ k}\Omega$, $R_1 = 18 \text{ k}\Omega$, $R_D = 4 \text{ k}\Omega$, $R_s = 2 \text{ k}\Omega$ and $C_C = 10 \mu\text{F}$] (10 marks)
- (b) Draw the small signal equivalent circuit for the midband frequency range and find the small signal voltage gain, $A_v = \frac{v_o}{v}$ and the equivalent output resistance R_o seen at the output terminals.

(10 marks)

Q.2 [20 marks]

- The transistor circuit is shown in Fig. 2, the transistor parameters are $\beta = 100$ and $V_A = \infty$.
- (a) Find Icq, V_{CEQ} and calculate the small-signal hybrid- π parameters r_{π} , g_m and r_o . (10 marks)
- (b) Find the small signal midband voltage gain $A_v = \frac{v_o}{v}$, the current gain $A_i = \frac{l_o}{v}$ and the input resistance R_{ib} . (10 marks)

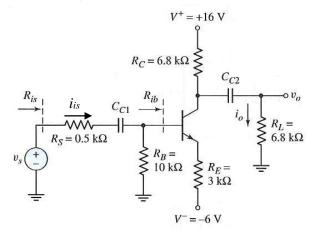
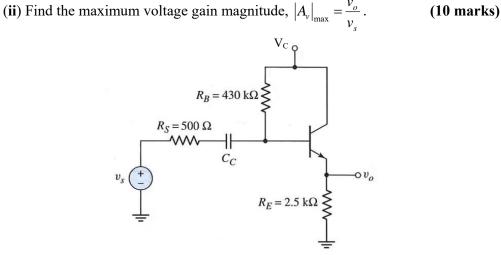


Fig. 2


Q.3 [20 marks]

(a) Draw the Bode plot (magnitude and phase) of the following transfer function.

(10 marks)

$$H(s) = \frac{10^6 s(s+1000)}{(s+1000)(s+10000)}$$

- (b) The emitter follower transistor amplifier is shown in Fig. 3(b) and the transistor has small signal hybrid- π parameters, $r_{\pi} = 2.61k\Omega$, $g_m = 40mA/V$ and $r_o = 100 k\Omega$.
 - (i) Determine the value of C_C such that the lower 3dB frequency is 15Hz.

Q.4 [20 marks]

(a) The common emitter amplifier is shown in Fig. 4(a) and operated at high frequencies. Draw the high-frequency small signal equivalent circuit diagram.

(10 marks)

- (i) Find the Miller capacitance.
- (ii) Determine the upper 3dB frequency (f_H) considering Miller capacitance and without considering Miller capacitance.

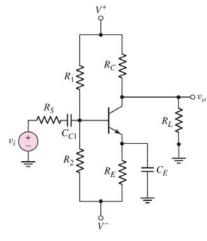
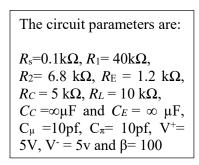



Fig. 4(a)

- (b) Draw the frequency response of an amplifier and define the bandwidth of the amplifier. (3 marks)
- (c) The two-transistor current source is shown in Fig. 4(c). Derive the following equation showing all the steps, where the symbols have their usual meanings:

(7 marks)

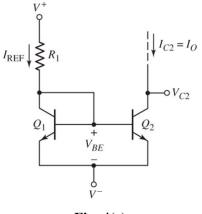


Fig. 4(c)

Q.5 [20 marks]

(a) The circuit diagram of a Wildar current source is shown in Fig. 5(a). Design the circuit such that $I_o = 30\mu A$ and $I_{REF} = 150\mu A$ neglecting base current. Also determine V_{BE2} . [Given that $V^+ = 5 V$, $V^- = -5 V$ and $V_A = \infty$] (5 marks)

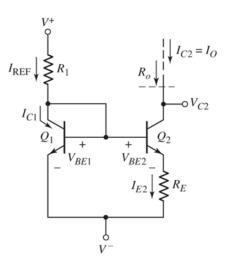


Fig. 5(a)

- (b) Draw a basic configuration of a feedback amplifier and show step by step that the bandwidth of the amplifier is increased by a factor of $(1 + \beta A)$. (5 marks)
- (c) An ideal shunt-series feedback amplifier topology is shown Fig. 5(c). Find the closed loop current gain, A_{if} , the input resistance, R_{if} and output resistance R_{of} .

(10 marks)

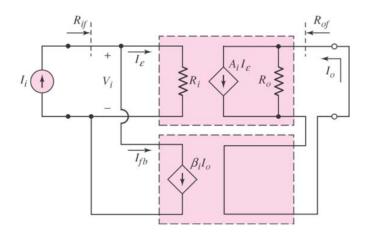


Fig. 5(c)

BJT	MOSFET
$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{V}$	$g_{m} = 2\sqrt{K_{n}I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$ $K_{n} = \frac{k'_{n}}{2} \left(\frac{W}{L}\right)$

USEFUL FORMULA