

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA END OF SEMESTER EXAMINATION SEMESTER II, 2012/2013 SESSION KULLI YYAH OF ENGINEERI NG

Programme	: ENGINEERING	Level of S	Study	: UG 2
Time Duration	: 2:30 pm-5:30 pm : 3 Hrs	Date	: 26/0	05/2013
Course Code	: ECE 2133	Section(s)): 1-2	

Course Title : Electronic Circuits

This Question Paper consists of **Six (6)** Printed Pages (Including cover and a blank page) with **Five (5)** Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- A total mark of this examination is **100**.
- This examination is worth **50%** of the total assessment.
- Answer <u>ALL FIVE (5)</u> questions.
- Useful formula and necessary parameters are given in page 6.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

Q.1 [20 marks]

(a) The MOSFET circuit is shown in Fig. 1, the transistor parameters are $K_n = 0.5 \text{ mA/V}^2$, $V_{TN} = 0.8 \text{V}$ and $\lambda = 0$. Find V_{GS}, I_D, and V_{DS}. Also calculate the small-signal hybrid- π parameters g_m and r_o . (10 marks)

Fig. 1(a)

(b) The BJT amplifier circuit is shown in Fig. 1(b), the transistor parameters are β =100 and V_A=100. (i) Determine I_{CQ} and V_{CEQ} (ii) find the small-signal hybrid- π parameters r_{π}, g_m and r_o. (10 marks)

Fig. 1(b)

Q.2 [20 marks]

Draw the small signal equivalent circuit diagram of the MOSFET amplifier which is shown in **Fig. 2** and find followings; (20 marks)

- (i) the input resistance R_i,
- (ii) the voltage gain $A_v = \frac{v_o}{v}$ and
- (iii) the output resistance R_o of the amplifier at midband frequencies . The transistor parameters are $g_m=0.65 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$.

Q.3 [20 marks]

(a) Draw the Bode plot (magnitude and phase) of the following transfer function.

$$H(s) = \frac{10^6 s(s+10)}{(s+100)(s+1000)}$$
 (8 marks)

- (b) The common emitter transistor amplifier is shown in Fig. 3(b) and the transistor has small signal hybrid- π parameters, $r_{\pi} = 2.5 \text{ k}\Omega$, $g_m = 40 \text{mA/V}$ and $r_o = \infty$.
 - (i) Determine the value of C_C such that the lower 3dB/corner frequency is 15Hz.
 - (ii) Find the maximum current gain $|A_i|_{dB}$ in dB, where $A_i = \frac{i_o}{i_c}$. (12 marks)

Q.4 [20 marks]

(a) A BJT is biased at I_C = 0.15 mA, and has parameters $\beta_0 = 150$, C_{π} = 0.8pF and C_{μ} = 0.12pF. Determine beta cutoff frequency f_β and cutoff frequency f_T .

(5 marks)

(b) The common emitter amplifier is shown in Fig. 4(b) which is operated at high frequencies. The transistor parameters are: $r_{\pi} = 3 \text{ k}\Omega$, $g_m = 40 \text{ mA/V}$ and $r_o = \infty$, $C_{\pi} = 25 \text{ pF}$, and $C_{\mu} = 2 \text{ pF}$. (15 marks)

Fig. 4(b)

- (i) Draw the high-frequency equivalent circuit diagram.
- (ii) Draw the Miller equivalent circuit diagram.
- (iii) Find the Miller capacitance.
- (iv) Find the upper 3 dB/corner frequency (f_H) without Miller capacitance,
- (v) Find the upper 3 dB/corner frequency (f_H) with Miller capacitance,
- (vi) Find the upper 3 dB/corner frequency (f_H) with load capacitance, C_L and
- (vii) Find the midband voltage gain.

Q.5 [20 marks]

(a) State 5 advantages and 2 disadvantages of a negative feedback amplifier.

(5 marks)

(b) The open-loop low-frequency voltage gain of an amplifier is $A_v = 5 \times 10^4$ and the open-loop 3 dB frequency is $f_H = 10$ Hz. If the closed-loop gain is $A_{vf} = 25$, what is the closed-loop bandwidth? (5 marks)

(c) A series-series feedback amplifier topology is shown Fig. 5(c). Draw the ideal equivalent circuit diagram and find the closed loop transconductance gain, A_{gf} , the input resistance, R_{if} and output resistance R_{of} .

(10 marks)

Fig. 5(c)

BJT	MOSFET		
$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{V}$	$g_{m} = 2\sqrt{K_{n}I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$ $K_{n} = \frac{k_{n}'}{2} \left(\frac{W}{L}\right)$		

USEFUL FORMULA