

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA END OF SEMESTER EXAMINATION SEMESTER I, 2011/2012 SESSION KULLI YYAH OF ENGINEERI NG

Programme	: ENGINEERING	Level of S	Study	: UG 2
Time Duration	: 2:30 pm-5:30 pm : 3 Hrs	Date	: 08/0	01/2012
Course Code	: ECE 2133	Section(s) : 1		

Course Title : Electronic Circuits

This Question Paper consists of **Six (6)** Printed Pages (Including cover and a blank page) with **Five (5)** Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- A total mark of this examination is **100**.
- This examination is worth **50%** of the total assessment.
- Answer <u>ALL FIVE (5)</u> questions.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

Q.1 [20 marks]

(a) For the transistor parameters for the circuit is shown in Fig. 1(a) are β =100 and V_A=100. (i) Design the circuit such that it is biased stable and the V_{CEQ}= 1.0 V and V_{BE} =0.7 V. (ii) Find the small-signal hybrid- π parameters r_{π} , g_{m} and r_{o} and draw the small signal equivalent circuit for the midband frequency range. (10 marks)

Fig. 1(a)

(b) The FET circuit is shown in Fig. 1(b), the transistor parameters are: $K_n = 1 \text{ mA/V}^2$, $V_{TN}=2V$ and $\lambda = 0.01 \text{ V}^{-1}$. Find (i) the quiescent current I_{DQ}. (ii) Find the small-signal hybrid- π parameters g_m and r_o and draw the small signal equivalent circuit for the midband frequency range. All capacitors are 10 μ F. (10 marks)

Q.2 [20 marks]

(a) The common emitter transistor amplifier is shown in Fig. 2(a) and the transistor has small signal hybrid- π parameters, $r_{\pi} = 4k\Omega$, $g_m = 20mA/V$ and $r_o = \infty$. Find (i) the midband frequency voltage gain, $A_v = v_o/v_s$ and (ii) the input resistance R_i of the amplifier. (10 marks)

Fig. 2(a)

(b) The Darlington pair transistor is shown in Fig. 2(b). Prove that the current of the Darlington pair amplifier is given by $A_i = \beta_1 \beta_2$. [Symbols have their usual meanings] (6 marks)

Fig. 2(b)

(c) Draw the Bode plot (magnitude and phase) of the following transfer functions.

(4 marks)

(i) $H(s) = \frac{10}{(s+1000)}$ (ii) $H(s) = \frac{10000s}{(s+100)}$

Q.3 [20 marks]

(a) The common collector transistor amplifier is shown in Fig. 3(a) and the transistor has small signal hybrid- π parameters, $r_{\pi} = 4 \text{ k}\Omega$, $g_m = 20 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$. The value of coupling capacitance is infinity. Find:

VCC

- (i) the voltage gain, $A_v = v_o/v_s$ of the amplifier.
- (ii) the current gain, $A_i = i_0/i_s$ the amplifier.
- (iii) the input resistance, R_{is} of the amplifier.
- (iv) the output resistance, R_o of the amplifier.

- (b) Draw the typical frequency response of an amplifier and discuss the behavior of the response. (3 marks)
- (c) Determine the lower 3 dB frequency (f_L) of the common emitter transistor with DC blocking capacitor as shown in Fig. 3(c). The transistor parameters are: $V_{BE} = 0.7$ (on), $\beta = 120$, and $V_A = \infty$. [Other information can be found in this question]

(7 marks)

- (2 marks)
- (3 marks) (2 marks)
- (3 marks)

Q.4 [20 marks]

(a) Determine the Miller capacitance and the upper 3 dB frequency (f_H) with and without Miller capacitance of the common emitter circuit shown in Fig. 4(a). The transistor parameters are: $r_{\pi} = 4 \text{ k}\Omega$, $g_m = 40 \text{ mA/V}$ and $r_o = \infty$, $C_{\pi} = 35 \text{ pF}$, and $C_{\mu} = 4 \text{ pF}$.

(10 marks)

(b) Design a Wildlar current source as shown in Fig. 4(b) such that $I_{REF} = 1.5$ mA and $I_o = 15\mu$ A. Assume that $V^+ = +5$ V, $V^- = -5$ V, and $V_{BE1} = 0.7$ V. [Collector current is approximately given by $I_C = I_s e^{V_{BE}/V_T}$, where I_s is the reverse saturation current and V_T is the thermal voltage, $V_T = 26$ mV] (10 marks)

Fig. 4(b)

Q.5 [20 marks]

(a) Design a MOSFET current source as shown in Fig. 5(a) such that $I_{REF} = 0.5$ mA and $I_0 = 0.1$ mA. The bias voltage V⁺ = +5 V and V⁻ = -5 V. The transistors are available with parameters $k'_n = 40 \mu A/V^2$, $V_{TN} = 1$ V and $\lambda = 0$. (7 marks)

- Fig. 5(a)
- (b) What is a feedback system? Write down the advantages and disadvantages of a negative feedback amplifier. (3 marks)
- (c) Draw the block diagram of a basic feedback amplifier and derive the closed-loop transfer function as $A_f = \frac{A}{1 + \beta A}$. [The symbols have their usual meanings] (4 marks)
- (d) The series-shunt feedback topology is shown in Fig. 5(d). Draw the equivalent circuit configuration of an ideal series-shunt feedback amplifier. Derive the closed-loop voltage gain, A_f , input resistance with feedback, R_{if} and output resistance with feedback, R_{of} . (6 marks)

Fig. 5(d)