

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA END OF SEMESTER EXAMINATION SEMESTER I, 2013/2014 SESSION KULLI YYAH OF ENGINEERI NG

Programme	: ENGINEERING	Level of S	Study	: UG 2
Time Duration	: 2:30 pm-5:30 pm : 3 Hrs	Date	: 08/0	01/2014
Course Code	: ECE 2133	Section(s)): 1-2	

Course Title : Electronic Circuits

This Question Paper consists of **Six (6)** Printed Pages (Including cover and a blank page) with **Five (5)** Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- A total mark of this examination is **100**.
- This examination is worth **50%** of the total assessment.
- Answer <u>ALL FIVE (5)</u> questions.
- Useful formula and necessary parameters are given in page 6.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

Q.1 [20 marks]

(a) Consider the circuit shown in Fig. 1(a), derive the expression (step by step) of the voltage transfer function $T(s) = \frac{v_o(s)}{v_i(s)}$ and find the time constant and the corner frequency.

(10 marks)

(b) Draw the Bode plot (magnitude and phase) of the following transfer function.

(10 marks)

$$H(s) = \frac{10^6(s+100)}{s}$$

Q.2 [20 marks]

- (a) The MOSFET circuit is shown in Fig. 2(a), the transistor parameters are $g_m = 0.65 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$. Draw the small signal equivalent circuit for the midband frequency range and find
 - the small signal voltage gain, $A_v = \frac{V_o}{v_i}$, (i)
 - (ii) the lower corner frequency,
 - (iii) the equivalent output resistance R_o seen at the output terminals.

Given that $R_1 = 180 \text{ k}\Omega$, $R_2 = 330 \text{ k}\Omega$, $R_s = 1.0 \text{ k}\Omega$, $R_D = 10 \text{ K}\Omega$ and $C_C = 10 \mu\text{F}$.

(8 marks)

Fig. 2(a)

(b) The transistor circuit is shown in Fig. 2(b), the transistor has small-signal hybrid- π parameters, $r_{\pi} = 3 \text{ k}\Omega$, $g_m = 40 \text{mA/V}$ and $r_o = \infty$. The circuit parameters are: $R_{\text{si}} = 0.1 \text{ k}\Omega$, $R_1 = 60 \text{ k}\Omega$, $R_2 = 30 \text{ k}\Omega$, $R_E = 0.4 \text{ k}\Omega$, $R_C = 10 \text{ k}\Omega$, $R_L = 10 \text{ k}\Omega$, $C_C \rightarrow \infty$ and $C_L = 10 \text{ pF}$. Find the followings: (12 marks)

(iv) the small signal midband voltage gain, $A_v = \frac{v_o}{v_i}$,

- (v) the midband current gain, $A_i = \frac{l_o}{l_i}$,
- (vi) the higher corner frequency (3 dB frequency) due to CL.

Q.3 [20 marks]

- (a) Draw the simplified high frequency small-signal equivalent circuit diagram of the ac circuit shown in Fig. 3(a) and derive step by step short circuit current gain
 - $A_i = \frac{I_c}{I_b}$. Then find the beta frequency f_β and cutoff frequency f_T and find the relation

between gain and bandwidth.

(8 marks)

Fig. 3(a)

- (b) The common emitter amplifier is shown in Fig. 3(b) and operated at high frequencies. The transistor parameters are: $r_{\pi} = 4 \text{ k}\Omega$, $g_m = 40 \text{ mA/V}$ and $r_o = \infty$, $C_{\pi} = 35 \text{ pF}$, and $C_{\mu} = 4 \text{ pF}$. (12 marks)
 - (i) Draw the simplified high-frequency small signal equivalent circuit diagram.
 - (ii) Find the Miller capacitance.
 - (iii) Determine the upper 3dB frequency (f_H) considering Miller capacitance and without considering Miller capacitance.

Q.4 [20 marks]

(a) The circuit diagram of a Wildar current source is shown in Fig. 4(a). Design the circuit such that $I_0 = 5\mu A$ and $I_{REF} = 50\mu A$ neglecting base current. Also determine V_{BE2} . [Given that $V^+ = 5 V$, $V^- = -5 V$, $V_{BE1} = 0.7 V$ and $V_A = \infty$] (10 marks)

Fig. 4(a)

(b) Design a MOSFET current source as shown in Fig. 4 (b) such that $I_{REF} = 0.5$ mA and $I_o = 1$ mA, and $V_{DS(sat)} = 0.4$ V. The bias voltage V⁺ = +5 V. The transistors are available with parameters $k'_n = 40 \mu A / V^2$, $V_{TN} = 0.4$ V and $\lambda = 0$. (10 marks)

Q.5 [20 marks]

- (a) In a feedback amplifier, the open-loop low-frequency gain is A_o = 10⁶ and the open-loop 3 dB frequency is 8 Hz. If the bandwidth of closed-loop system is 250 kHz, what is the maximum allowable value of the closed-loop low-frequency gain?
 (5 marks)
- (b) The ideal feedback amplifier topology is shown Fig. 5(b). Identify the type of feedback and derive step by step the closed loop current gain, A_{zf} , the input resistance, R_{if} and output resistance R_{of} . (10 marks)

Fig. 5(b)

(b) The OP-amp feedback amplifier is shown Fig. 5(c). Identify the type of feedback and find the feedback factor, β . (5 marks)

Fig. 5(c)

USEFUL FORMULA

$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $K_{n} = 26 \mathrm{mV}$ $I_{D} = \frac{1}{2} k_{n}' (W_{L}') (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ $g_{m} = 2\sqrt{K_{n} I_{DQ}}$ $K_{n} = \frac{k_{n}'}{2} \left(\frac{W}{L}\right)$	BJT	MOSFET
$V_{\rm BE}(on) = 0.7 \rm V$	$i_{C} = I_{S} e^{v_{BE}/V_{T}} \cdot \left(1 + \frac{v_{CE}}{V_{A}}\right)$ $g_{m} = \frac{I_{CQ}}{V_{T}}$ $r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$ $r_{o} = \frac{V_{A}}{I_{CQ}}$ $V_{T} = 26 \text{ mV}$ $V_{BE}(on) = 0.7 \text{V}$	$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L} \right) (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ $g_{m} = 2\sqrt{K_{n} I_{DQ}}$ $r_{o} = \frac{1}{\lambda I_{DQ}}$ $K_{n} = \frac{k'_{n}}{2} \left(\frac{W}{L} \right)$