

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MID-TERM EXAMINATION SEMESTER I, 2013/2014 SESSION KULLIYYAH OF ENGINEERING

Programme

: ENGINEERING

Level of Study

: UG 2

Time

: 8:00 pm-10:00 pm

Date

: 06/11/2013

Duration

: 2 Hours

Course Code : ECE 2133

Section(s) : 1 & 2

Course Title : Electronic Circuits

This Question Paper consists of Eight (8) Printed Pages (Including Cover and a blank page) with Three (3) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Use only pen for writing answer.
- Do not use your own sheet.
- A total mark of this examination is 60.
- This examination is worth 30% of the total assessment.
- For drawing you may use pencil
- Answer ALL THREE(3) questions.
- Answer on the question paper.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

	Question 1 farks 20		Ques	tion 2	Ques	tion 3	Total Marks	
Marks			2	20	20		60	
Marks		•						
Obtained						2		

Q.1 [20 marks]

(a) Consider the circuit shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function $T(s) = \frac{v_o(s)}{v_i(s)}$ and find the time constant and the corner frequency. (8 marks)

Fig. 1(a)

$$T(s) = \frac{v_{s}(s)}{v_{r}(s)} = \frac{R\rho}{R\rho + Rs + \frac{1}{sCs}} = \frac{R\rho + SCs}{1 + (R\rho + Rs) + SCs}$$

$$= \frac{R\rho}{R\rho + Rs} \frac{g(R\rho + Rs)Gs}{1 + g(R\rho + Rs)Gs} = K. \frac{s Cs}{1 + s Cs}$$

$$V_s = (R\rho + R\rho)Gs \cdot f = \frac{1}{2\pi Cs} = \frac{1}{2\pi C(R\rho + Rs)} + \frac{1}{2\pi C(R\rho + Rs)}$$

Electronic Circuits

Matric	No:			

ECE 2133

(b) Draw the Bode plot (magnitude and phase) of the following transfer function.

(12 marks)

$$T(s) = \frac{10^6 s(s+100)}{(s+10)(s+1000)}$$

Q.2 [20 marks]

- (a) Draw the small signal equivalent circuit diagram of the circuit shown in Fig. 2(a) and find the followings: (10 marks)
 - (i) the input resistance R_i,
 - (ii) the midband voltage gain $A_{\nu} = \frac{v_o}{v_s}$ of the amplifier, and
 - (iii) the lower corner frequency due to C_C .

Given that $R_s=0.5~k\Omega$, $R_1=330~k\Omega$, $R_2=85~k\Omega$, $R_C=4~k\Omega$, $R_E=1.5~k\Omega$, $C_C=1~\mu F$. The transistor has small-signal hybrid- π parameters, $r_\pi=3~k\Omega$, $g_m=40 mA/V$ and $r_o=\infty$.

Fig. 2(a)

(ii)
$$\gamma = \text{keg Cc}$$

$$= (0.5 + 49.468)_{\text{K}}^{\text{IM}}$$

$$= 49.968 \text{ mS}$$

- (b) Draw the small signal equivalent circuit diagram of the circuit shown in Fig. 2(b) and find the followings: (10 marks)
 - (i) the midband voltage gain $A_v = \frac{v_o}{v_i}$,
 - (ii) the output resistance Ro of the amplifier, and
 - (iii) the corner frequency due to $C_L = 4$ pF assumed that $C_C \rightarrow \infty$.

Given that R_{si} = 2 k Ω , R_1 = 180 k Ω , R_2 = 330 k Ω , R_s = 1.0 k Ω , R_L = 10 K Ω . The transistor parameters are g_m =0.65 mA/V and r_o = 100 k Ω .

Fig. 2(b)

$$R_{3} = \frac{1}{100} = \frac{100}{100} = \frac{100}{1$$

$$V_{4} = V_{95} + V_{x} = 0$$
 . $V_{95} = -V_{x}$

$$= \frac{100011111.538}{0.5682 \times 92} = \frac{0.57111 \times 9}{0.5682 \times 92}$$

iii)
$$\gamma = \text{Reg} \times c_L = 0.5682 \times Ap = 2.272 \text{ nS}.$$

$$= \frac{1}{2\pi c} = \frac{1}{2\pi c}$$

Q.3 [20 marks]

(a) Draw the simplified high frequency small-signal equivalent circuit diagram of the ac circuit shown in Fig. 3(a) and derive step by step short circuit current gain $A_i = I_c/I_b$. Then find the beta frequency f_β and cutoff frequency f_T and find the relation between gain and bandwidth. (10 marks)

Fig. 3(a)

$$I_{c} = g_{m}v_{n} - \frac{v_{n}}{v_{s}} = \left[g_{m} - sc_{n}\right] \frac{2}{\sqrt{\pi}}$$

$$I_{c} = g_{m}v_{n} - \frac{v_{n}}{v_{s}} = \left[g_{m} - sc_{n}\right] \frac{2}{\sqrt{\pi}}$$

$$I_{b} = \frac{v_{h}}{\sqrt{\pi}} + \frac{v_{h}}{\sqrt{\pi}} + \frac{v_{h}}{\sqrt{\pi}}$$

$$= v_{h} \left[s'(c_{n} + c_{n}) + \frac{1}{v_{n}}\right] = \frac{v_{h}}{\sqrt{\pi}} \left[1 + f_{h}(c_{n} + c_{n})\right]$$

$$= \frac{v_{h}}{\sqrt{\pi}} \left[s'(c_{n} + c_{n}) + \frac{1}{v_{n}}\right] = \frac{v_{h}}{\sqrt{\pi}} \left[1 + f_{h}(c_{n} + c_{n})\right]$$

$$= \frac{v_{h}}{\sqrt{\pi}} \left[s'(c_{n} + c_{n}) + \frac{1}{v_{n}}\right] = \frac{v_{h}}{\sqrt{\pi}} \left[s'(c_{n} + c_{n}) + \frac{1}{\sqrt{\pi}}\right]$$

$$= \frac{v_{h}}{\sqrt{\pi}} \left[s'(c_{n} + c$$

- (b) The common emitter amplifier is shown in Fig. 3(b) and operated at high frequencies. Draw the simplified high-frequency small signal equivalent circuit diagram and
 - (i) find the Miller capacitance, and
 - (ii) determine the upper 3dB frequency (f_H) considering Miller capacitance and without considering Miller capacitance. (10 marks)

The circuit parameters are:

 $R_{\rm s}$ =0.1k Ω , $R_{\rm 1}$ = 40k Ω , $R_{\rm 2}$ = 6.8 k Ω , $R_{\rm E}$ = 1.2 k Ω , R_{C} = 5 k Ω , R_{L} = 10 k Ω , C_{C} = ∞ μ F and C_{E} = ∞ μ F V⁺= 5V, V⁻= 5V.

The transistor parameters are:

 $r_\pi=3~k\Omega,~g_m=40~mA/V$ and $r_o=100~k\Omega,$ $C_\pi=25$ pF, and $C_\mu=2$ pF

$$A_{N_A} = -\frac{9}{40} \text{ M}$$

$$= -\frac{40}{3.226} = -129.03 \text{ M}$$

$$= -\frac{40}{3.226} = -129.03 \text{ M}$$

$$= -\frac{1}{1129.03} \text{ Cm}$$

$$= -\frac{1}{1129.03} \text{ M}$$

in)
$$r_{m} = 0.09 t_{k} 285 p$$

$$= 26.97 n S.$$