MODEL ANSW

Name:		
Matric No:	Section:	
	(∂≈6)	

المحة السلامية العالمية ما يبريا

INTERNATIONAL ISLAMIC UNI

MID-TERM EXAMINATION SEMESTER II, 2013/2014 SESSION KULLIYYAH OF ENGINEERING

Programme

: ENGINEERING

Level of Study

: UG 2

Time

: 8:00 pm-10:00 pm

Date

: 20/03/2014

Duration

: 2 Hours

Course Code : ECE 2133

Section(s) : 1 & 2

Course Title : Electronic Circuits

This Question Paper consists of Eight (8) Printed Pages (Including Cover and a blank page) with Three (3) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Use only pen for writing answer.
- Do not use your own sheet.
- A total mark of this examination is **60**.
- This examination is worth 30% of the total assessment.
- For drawing you may use pencil
- Answer ALL THREE(3) questions.
- Answer on the question paper.

Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

	Question 1	Question 2	Question 3	Total Marks
Marks	20	20	20	60
Marks Obtained				

Q.1 [20 marks]

(a) Consider the circuit shown in Fig. 1(a), derive the expression (step by step) for the voltage transfer function $T(s) = \frac{v_o(s)}{v_i(s)}$ and find the time constant and the corner frequency. (8 marks)

$$R_3 | \frac{1}{5c}$$

$$= \frac{R_3 (\frac{1}{5c})}{R_3 + \frac{1}{5c}} = \frac{R_3}{1 + S R_3 C}$$

$$T(s) = \frac{v_{s}(s)}{v_{i}(s)} = \frac{R_{2} + \frac{R_{3}}{1 + sR_{3}C}}{R_{1} + R_{2} + \frac{R_{3}}{1 + sR_{3}C}}$$

=
$$\frac{R_2 + R_3 + 3R_2R_3C}{R_1 + R_2 + R_3 + 3(R_1 + R_2)R_3C}$$

= $\frac{R_2 + R_3}{R_1 + R_2 + R_3}$ $\left[1 + \frac{3R_2R_3C}{(R_2 + R_3)} \right]$
 $\left[1 + \frac{3R_2R_3C}{(R_2 + R_3)} \right]$
 $\left[1 + \frac{3R_2R_3C}{(R_2 + R_3)} \right]$

$$\mathcal{C}_{A} = \frac{R_{2}R_{3}}{R_{2}+R_{3}}C = \frac{R_{2}N_{3}}{R_{3}}C \qquad = \frac{R_{4}R_{2}R_{3}}{R_{4}+R_{2}+R_{3}}C = \frac{R_{4}R_{2}R_{3}}{R_{4}+R_{2}R_{3}}C = \frac{R_{4}R_{3}R_{3}}{R_{4}+R_{2}R_{3}}C = \frac{R_{4}R_{3}R_{3}}{R_{4}+R_{2}}C = \frac{R_{4}R_{3}R_{3}}{R_{4}+R_{2}}C = \frac{R_{4}R_{3}R_{3}}{R_{4}}C = \frac{R_{4}R_{3}R_{3}}{R_{4}}C$$

(b) Draw the Bode plot (magnitude and phase) of the following transfer function.

. (12 marks)

$$T(s) = \frac{10^6 s(s+10)}{(s+100)(s+1000)}$$

$$= \frac{10^{6} \cdot 8 \times 10 \left[1 + \frac{9}{10}\right]}{\left[000 \left[1 + \frac{9}{1000}\right] \cdot 1000 \left[1 + \frac{9}{1000}\right]}$$

$$= \frac{100 \cdot 8 \cdot \left[1 + \frac{9}{10}\right]}{\left[1 + \frac{9}{1000}\right] \cdot 1000}$$

Q.2 [20 marks]

(a) Draw the small signal equivalent circuit diagram of the circuit shown in Fig. 2(a) and find the followings: (10 marks)

Find the small signal midband voltage gain $A_v = \frac{v_o}{v_s}$ and the lower corner frequency due to C_{CI} assuming that $C_{C2} = \infty$.

Given that $R_s = 0.5$ k Ω , $R_1 = 330$ k Ω , $R_2 = 85$ k Ω , $R_C = 4$ k Ω , $R_E = 1.5$ k Ω , $C_{CI} = 1$ μF and $C_{C2} = \infty$. The transistor has small-signal hybrid- π parameters, $r_{\pi} = 3$ k Ω , $g_m = 40$ mA/V and $r_0 = \infty$.

$$R_{i} = R_{i} b \| R_{B}$$

$$= 366 \| 10 = 9.74K$$

$$= A_{i} A_{i} = -1.1147 \times \frac{9.73}{9.7370.5}$$

$$= -1.06 \text{ V/V} + \frac{1.06}{2.7370.5} \times \frac{1.06}{2.7370.5}$$

$$= -1.06 \text{ V/V} + \frac{1.06}{2.7370.5} \times \frac{1.06}{2.7370.$$

- (b) Draw the small signal equivalent circuit diagram of the circuit shown in Fig. 2(b) and find the followings: (10 marks)
 - (i) the midband voltage gain $A_v = \frac{v_o}{v_i}$,
 - (ii) the output resistance Ro of the amplifier, and
 - (iii) the corner frequency due to C_L = 4 pF assumed that $C_C \rightarrow \infty$.

Given that R_{si} = 1 k Ω , R_1 = 180 k Ω , R_2 = 330 k Ω , R_s = 3.0 k Ω , R_L = 6 K Ω . The transistor parameters are g_m =0.65 mA/V and r_o = 100 k Ω .

$$A_{V} = A_{V_{A}} \times \frac{P_{C}}{P_{Si} + P_{i}} = 0.56 \times \frac{116.47}{1 + 116.47}$$

$$= 0.555 \text{ W}.$$

Filling
$$R_{a} = \frac{1}{2\pi} \frac{1}{2} \frac{1$$

777			~ 0	
-	antmar	110	1 4400	177440
F . 1	ectror	116	1 111	11115

Matric No:	ECE	2133

- (b) The common emitter amplifier is shown in Fig. 3(b) and operated at high frequencies. Draw the simplified high-frequency small signal equivalent circuit diagram and
 - (i) find the Miller capacitance, and
 - (ii) determine the upper 3dB frequency (f_H) considering Miller capacitance and without considering Miller capacitance. (10 marks)

The circuit parameters are:

$$R_{\rm S}=1\,{\rm k}\Omega,~R_{\rm l}=120\,{\rm k}\Omega,~R_{\rm 2}=20~{\rm k}\Omega,~R_{\rm E}=2~{\rm k}\Omega,~R_{C}=5~{\rm k}\Omega,~R_{L}=20~{\rm k}\Omega,~C_{CI}=\infty$$
 and $C_{E}=\infty$.

The transistor parameters are:

$$r_\pi=3~k\Omega,~g_m=40~mA/V$$
 and $r_o=100~k\Omega,~C_\pi=25~pF,$ and $C_\mu=4~pF$

Fig. 3(b)

$$\gamma_{n} = 463.03 \, \text{n}^{3}$$

$$\gamma_{n} = 463.03 \, \text{n}^{3}$$

$$\gamma_{n} = 463.03 \, \text{n}^{3}$$

$$\gamma_{n} = 343.724 \, \text{KHz}$$

$$\gamma_{n} = 343.724 \, \text{KHz}$$

Q.3 [20 marks]

(a) Draw the simplified high frequency small-signal equivalent circuit diagram of the ac circuit shown in Fig. 3(a) and derive step by step short circuit current gain $A_i = I_0/I_0$. Then find cutoff frequency f_T . (10 marks)

Fig. 3(a)

Vslad 4

The state of the state o

$$|Ai| = \frac{g_m}{s(g_s+c_gd)} = \frac{g_m}{c_0(c_{q_s}+c_gd)}$$
 (s=jw)