MODEL ANSWER.

Name:		

Section: Matric No:

العامة السلامية عاليريا

INTERNATIONAL ISLAM

MID-TERM EXAMINATION SEMESTER II, 2015/2016 SESSION KULLIYYAH OF ENGINEERING

Programme

: ENGINEERING

Level of Study

: UG 2

Time

: 8:00pm-10:00 pm

Date

: 17/03/2016

Duration

: 2 Hours

Course Code : ECE 2133

Section(s) : 1 & 2

Course Title : Electronic Circuits

This Question Paper consists of Twelve (12) Printed Pages (Including Cover and a blank page) with Three (3) Questions.

INSTRUCTION(S) TO CANDIDATES

DO NOT OPEN UNTIL YOU ARE ASKED TO DO SO

- Use only pen for writing answer.
- Do not use your own sheet.
- Useful formulas and values are given in page 10.
- A total mark of this examination is **60**.
- This examination is worth 30% of the total assessment.
- For drawing you may use pencil
- Answer ALL questions.


Any form of cheating or attempt to cheat is a serious offence which may lead to dismissal.

	Q 1a	Q 1b	Q 2	Q 3	Total Marks
Marks	10	10	20	20	60
Marks Obtained					

Q.1 [20 marks]

(a) Derive the transfer function of the circuit shown in Fig. 1(a).

(10 marks)

Transfer function T(5)=
$$\frac{\gamma_0(s)}{\gamma_{in}(s)} = \frac{Zp+Zs}{Zp+Zs}$$

$$Z_0 = R_0 + \frac{1}{3}C_0$$
 $Z_s = R_s$

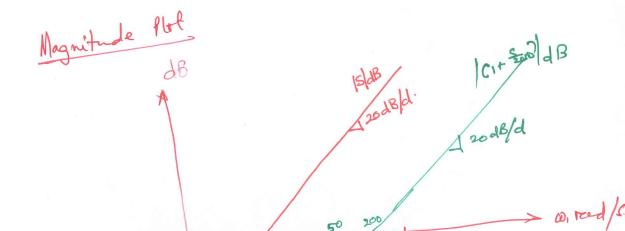
$$Z_p = R_p + \frac{1}{5}C_p$$

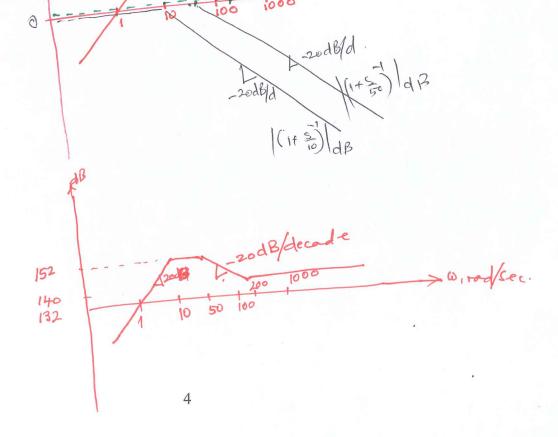
$$Z_p + Z_s = (R_p + R_s) + \frac{1}{5}C_p = \frac{1+ sC_p}{sC_p}$$

$$Z_p + Z_s = (R_p + R_s) + \frac{1}{sC_p}$$

$$Z_p+Z_S=P_p+S_p$$

$$1+SCpR_p$$


$$SCp$$


(b) Draw the Bode magnitude and phase plots of the following transfer function:

$$T(s) = 10^6 \frac{s(s+200)}{(s+10)(s+50)}$$
 (5+5 marks)

$$T(S) = \frac{10^{6} \times 8 \times 200}{10 \left[1 + \frac{8}{200}\right]} = \frac{4 \times 10^{6} \times \left(1 + \frac{8}{200}\right)}{10 \left[1 + \frac{8}{10}\right] \times \left(1 + \frac{8}{50}\right)} = \frac{4 \times 10^{6} \times \left(1 + \frac{8}{200}\right)}{11 \times \left(1 + \frac{8}{50}\right)}$$

Gener fregnencis,
$$w_{c2} = 10 \text{ rad/sec}$$
 $w_{03} = 50 \text{ rad/sec}$, $w_{1} = 200 \text{ rad/sec}$.

Q.2 [20 marks]

For the BJT amplifier circuit shown in Fig. 2(a) with transistor parameters, $g_m = 50$ mA/V, $r_\pi = 3$ k Ω and $r_0 = \infty$,

Matric No:

(i) Draw the small signal equivalent circuit diagram of the amplifier (4 marks)

(ii) Find the lower corner frequency due to coupling capacitor C_{C1} (5 marks)

(iii) Find the midband voltage gain, $A_v = \frac{v_0}{v_s}$ of the amplifier in dB (6 marks)

(iv) Find the bandwidth of the amplifier (5 marks)

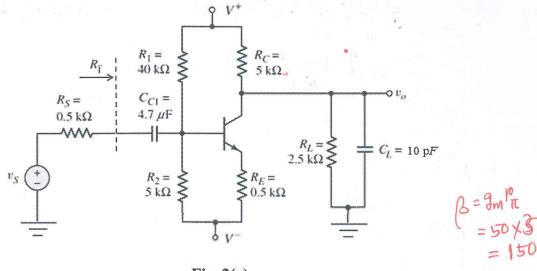
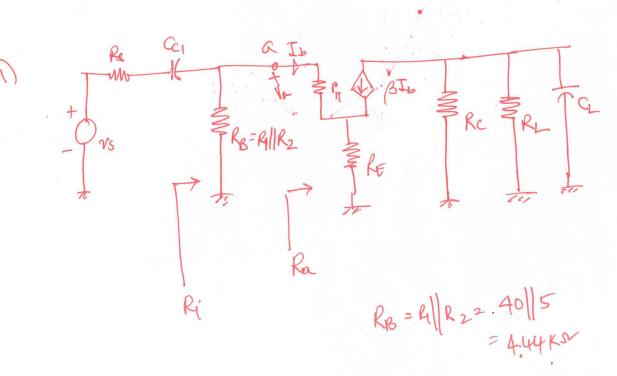



Fig. 2(a)

$$\begin{array}{ll} \text{if)} & Ra^{2} \frac{Va}{ib}^{2} & \frac{Va}{$$

$$R_i = A ||R_2||R_0 = 40 ||5|| 78.5 = 4.206 KD$$

 $V = G \times (R_i + R_s) = 4.74 \times (4.206 + 0.5) K$
 $= 22.12 \text{ ms}$

(iii)
$$Av_{A} = \frac{v_{0}}{v_{0}} = \frac{7.195}{V_{1}} \frac{R}{(1+8)} \frac{R}{V_{0}} = \frac{R}{150} \frac{R}{150}$$

$$= -\frac{7}{R_{t}} + (148)^{16}$$

$$= -3.185 \times \frac{(4.206)}{(4.206+0.5)}$$

$$= -3.185 \times \frac{(4.206+0.5)}{(4.206+0.5)}$$

$$= -2.846 = 9.086 dB$$

$$= -2.846 = 16.7 ns$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.840 = 1.00$$

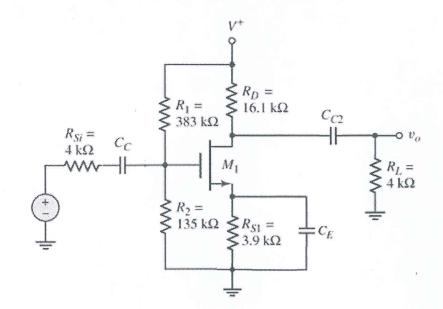
$$= -2.846 = 1.00$$

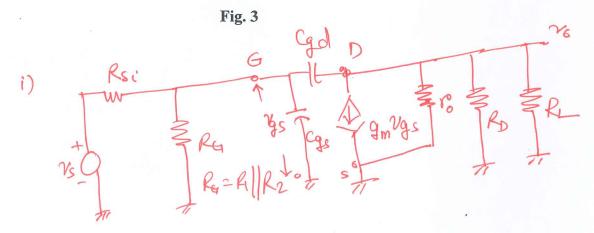
$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$

$$= -2.846 = 1.00$$


$$= -2.846 = 1.00$$


$$= -2.846 =$$

Q.3 [20 marks]

The common drain amplifier is shown in Fig. 3 that operated at high frequencies. The transistor parameters are: $g_m = 2.2 \text{ mA/V}$, $r_0 = 100 \text{ k}\Omega$, $C_{gs} = 10 \text{ pF}$, and $C_{gd} = 1 \text{ pF}$.

- (i) Draw the simplified high-frequency small signal equivalent circuit diagram. (3 marks)
- (ii) Draw the Miller equivalent circuit diagram. (2 marks)
- (iii) Calculate the value of Miller capacitance. (5 marks)
- (iv) Evaluate the higher corner frequency (f_{HM}) considering Miller capacitance (4 marks)
- (v) Evaluate the higher corner frequency (f_H) without considering Miller capacitance. (4 marks)
- (vi) Which frequency is considered for determining bandwidth of the amplifier out of above two corner frequencies? Justify. (2 mark)

R_ = 10 | Ro | R_ = 3.1045KD

(iii) (M2Gg/ 1-AVA)

 $Av_A = \frac{-g_m \gamma_{gs} R'}{v_{gs}} = -g_m R'$

 $: C_{M} = \frac{c_{qd} \left[1 + \frac{1}{4} mR_{L} \right]}{= 7.83 PF} = 7.83 PF$

Reg = Psi | Ra = 4 | 383 | 135 = 3.846 KD.

W) CT = Cgs+CM = 10p+7.83p= 17.83P 2= Rg CT = 68.57 ns.

fin = 1 = 2.32 MHZ.

2H = Reg Cgs = 38.46nS V) CT = 98 : fra 4.14 MHZ

vi) $f_{H} = 2.32 \text{ MH2}$ after this frequency vottege gain Atarts to drop below 3dB.